Microgreens dan senyawa yang terkandung didalamnya: Literatur review

(1) * Bashariah Bashariah Mail (Agroteknologi, Fakultas Pertanian, Universitas Hasanuddin, Indonesia)
(2) Amin Mbusango Mail (Ilmu Tanah, Fakultas Pertanian, Universitas Papua, Papua Barat, Indonesia)
(3) Ratna Ningsi Mail (Agroteknologi, Fakultas Pertanian, Universitas Papua, Papua Barat, Indonesia)
(4) Kati Syamsudin Kadang Tola Mail (Ilmu Tanah, Fakultas Pertanian, Universitas Papua, Papua Barat, Indonesia)
*corresponding author

Abstract


Microgreens are plants that are harvested very young usually when they are a few days to a few weeks old with a size between 3-10 cm or depending on the type of plant. The advantage of microgreens lies in their high nutritional content, both in terms of vitamins, minerals, and bioactive compounds. The method in this paper uses a literature study (literature review) which collects data from various scientific articles selected and analyzed articles that are relevant to the field of study. The reviewed literature sources come from journals, books, and other research reports. The growth, quantity and quality of harvested microgreens are greatly affected by the cultivation process and the plant variety itself. Many studies have found that light, growing media, nutrient availability and temperature, are components that affect the quality and quantity of microgreens. The content of microgreens itself has been studied to be at least 4 to 40 times the nutritional content of similar mature plants. Microgreens have higher concentrations of bioactive compounds, such as vitamins, minerals, antioxidants, when compared to similar mature plants. It can be concluded that the potential of microgreens is very high to become one of the materials for further studies related to agricultural and health disciplines.

Keywords


Bioactive compounds; light; microgreens; nutrients

   

DOI

https://doi.org/10.47679/ib.2024792
      

Article metrics

10.47679/ib.2024792 Abstract views : 50 | PDF views : 25

   

Cite

   

Full Text

Download

References


Adawiyah, A., Cahyanto, T., Salim, M. A., & Suparman, D. (2020). Bioprospek microgreens sebagai agen antivirus dalam menghambat penyebaran coronavirus disease 2019 (COVID-19). Program Studi Biologi, UIN Sunan Gunung Djati Bandung.

Agarwal, A., & Gupta, S. D. (2016). Impact of light-emitting diodes (LEDs) and their potential effects on plant growth and development in controlled-environment plant production systems. Current Biotechnology, 5, 28–43. https://doi.org/10.2174/2211550104666151006001126.

Alrifai, O., Hao, X., Marcone, M. F., & Tsao, R. (2019). Current review of the modulatory effects of LED lights on photosynthesis of secondary metabolites and future perspectives of microgreen vegetables. Journal of Agricultural and Food Chemistry, 67, 6075–6090. https://doi.org/10.1021/acs.jafc.9b00819.

Boccardi, V., Arosio, B., Cari, L., Bastiani, P., Scamosci, M., Casati, M., Mecocci, P. (2019). Beta-carotene , telomerase activity and Alzheimer‘s disease in old age subjects. European Journal of Nutrition, 0(0), 0. https://doi.org/10.1007/s00394-019-01892-y.

Brazaityte, A., Vaˇstakaite, V., Virˇsile, A., Jankauskien e, J., Samuolien e, G., Sakalauskien e, S., Duchovskis, P. (2018). Changes in mineral element content of microgreens cultivated under different lighting conditions in a greenhouse. Acta Horticulturae, 1227, 507–516.

Bulgari, R., Baldi, A., Ferrante, A., & Lenzi, A. (2017). Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. New Zealand Journal of Crop and Horticultural Science, 45, 119–129. https://doi.org/10.1080/01140671.2016.1259642

Choe, U., Yu, L. L., & Wang, T. T. Y. (2018). The science behind microgreens as an exciting new food for the 21st century. Journal of Agricultural and Food Chemistry, 66, 11519–11530. https://doi.org/10.1021/acs.jafc.8b03096.

De la Fuente, B., Lopez-Garc ıa, G., Ma´nez, V., Alegr ıa, A., Barbera, R., & Cilla, A. (2019). Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods, 8, 250. https://doi.org/10.3390/ foods8070250.

Di Gioia, F.; Renna, M.; Santamaria, P. (2017) Sprouts, Microgreens and “Baby Leaf” Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Springer: Boston, MA, USA, pp. 403–432. ISBN 978-1-4939-7016-2.

Gerovac, J. R., Craver, J. K., Boldt, J. K., & Lopez, R. G. (2016). Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience, 51(5), 497–503. https://doi.org/10.21273/hortsci.51.5.497.

Goodman, W., & Minner, J. (2019). Will the urban agricultural revolution be vertical and soilless? A case study of controlled environment agriculture in New York City. Land Use Policy, 83, 160–173.

Han, D. Y., Triggs, C. M., & Fraser, A. G. (2012). Brassicaceae : Nutrient analysis and investigation of tolerability in people with Crohn‘s disease in a New Zealand study. (November). https://doi.org/10.31989/ffhd.v2i11.70.

Hwe, So Sin (2021) Studi Literatur Pengaruh Intensitas Cahaya dan Panjang Gelombang Cahaya Terhadap Kandungan Β – Karoten Pada Microgreens Red Pak Choi (Brassica rapa var. Chinensis, ‘Rubi F1’) DAN Red Mustard (Brassica juncea (L.) ‘Red Lion’). Thesis, Universitas Katholik Soegijapranata Semarang.

Klopsch, R., Baldermann, S., Voss, A., Rohn, S., Schreiner, M., & Neugart, S. (2018). Bread enriched with legume microgreens and leaves–ontogenetic and baking-driven changes in the profile of secondary plant metabolites. Frontiers in Chemistry, 6, 322. https://doi.org/10.3389/fchem.2018.00322.

Kyriacou, M. C., El-Nakhel, C., Graziani, G., Pannico, A., Soteriou, G. A., Giordano, M., Rouphael, Y. (2019). Functional quality in novel food sources: Genotypic variation in the nutritive and phytochemical composition of thirteen microgreen species. Food Chemistry, 277, 107–118.

Kyriacou, M. C., Rouphael, Y., Di Gioia, F., Kyratzis, A., Serio, F., Renna, M., . . . Santamaria, P. (2016). Micro-scale vegetable production and the rise of microgreens. Trends in Food Science and Technology, 57A, 103–115. https://doi.org/10.1016/j.tifs.2016.09.005.

Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., & Zamfirache, M-M. (2017). Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules, 22, 2111. https://doi.org/10.3390/molecules22122111.

Muscogiuri, G., Barrea, L., Savastano, S., & Colao, A. (2020). Nutritional recommendations for CoVID-19 quarantine. European journal of clinical nutrition, 74(6), 850-851.

Nurbayanti. (2017). Uji Senyawa Bioaktif Dari Tujuh Spesies Ekstrak Metanol Microgreen Broad Leaf Sebagai Antikanker. Bandung: Skripsi, UIN Sunan Gunung Djati.

Nurjasmi, R., & Wahyuningrum, M. A. (2022). Pengaruh Media Tanam Organik terhadap Kandungan Klorofil dan Karoten Microgreens Brokoli (Brassica Oleracea L.). Jurnal Ilmiah Respati, 13(1), 43-52.

Riggio, G. M., Jones, S. L., & Gibson, K. E. (2019a). Risk of human pathogen internalization in leafy vegetables during lab-scale hydroponic cultivation. Horticulturae, 5, 1–22. https://doi.org/10.3390/horticulturae5010025.

Samuoliene, G. (2013). LED irradiance level affects growth and nutritional quality of Brassica microgreens. (December). https://doi.org/10.2478/s11535-013-0246-1.

Samuoliene, G., Urbonavi ciˇute, A., Brazaityt e, A.,Sabajevien e, G., Sakalauskait e,J., & Duchovskis, P. (2011). The impact of LED illumination on antioxidant properties of sprouted seeds. Central European Journal of Biology, 6, 68–74. https://doi.org/10.2478/s11535-010-0094-1

Samuoliene, G., Virˇsile, A., Brazaityt e, A., Jankauskien e, J., Sakalauskien e, S., Va stakaite, V., Duchovskis, P. (2017). Blue light dosage affects carotenoids and tocopherols in microgreens. Food chemistry, 228, 50–56. https://doi.org/10.1016j.foodchem.2017.01.144.

Simanavicius, L., & Virsile, A. (2018). The effects of led lighting on nitrates, ˙ nitrites and organic acids in tatsoi. Research for Rural Development, 2, 95–99. https://doi.org/10.22616/rrd.24.2018.057

Stoleru, T., Ionitᾰ, A., & Zamfirache, M. (2016). Microgreens-A new food product with great expectations. Romanian Journal of Biology, 61, 7–16.

Turner, E. R., Luo, Y., & Buchanan, R. L. (2020). Microgreen nutrition, food safety, and shelf life: A review. Journal of food science, 85(4), 870-882.

Weber, C. F. (2017). Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems. Frontier in Nutrition. doi: https://doi.org/10.3389/fnut.2017.00007.

Wood, L. (2019). Worldwide indoor farming market outlook 2019–2024—The decrease in cultivable land is driving growth. Research and Markets. Retrieved from https://www.globenewswire.com/news-release/2019/04/10/1801787/0/en/Worldwide-Indoor-Farming-Market-Outlook-2019-2024-The-Decrease-in-Cultivable-Land-is-DrivingGrowth.html.

Xiao, Z., Codling, E. E., Luo, Y., Nou, X., Lester, G. E., & Wang, Q. (2016). Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. Journal of Food Composition and Analysis, 49, 87–93. https://doi.org/10.1016/j.jfca.2016.04.006.

Xiao, Z., Lester, G. E., Luo, Y., & Wang, Q. (2012). Assesment of Vitamin and Carotenoid Concentrations of Emerging Food Product: Edible Microgreens. Journal of Agricultural and Food Chemistry, 60, 7644-7651.

Xiao, Z., Lester, G. E., Luo, Y., Kenny, Z., Lucy, L., & Wang, Q. (2014). Effect of light exposure on sensorial quality , concentrations of bioactive compounds and antioxidant capacity of radish microgreens during low temperature storage. Food Chemistry, 151, 472–479. https://doi.org/10.1016/j.foodchem.2013.11.086.

Xiao, Z., Rausch, S., Luo, Y., Sun, J., Yu, L., Wang, Q., & Chen, P. (2018). Original Research Article Microgreens of Brassicaceae : Genetic Diversity of Phytochemical Concentrations and Antioxidant Capacity. Lwt, 101, 731-737.

Ying, Q., Kong, Y., Jones-Baumgardt, C., & Zheng, Y. (2020). Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Scientia Horticulturae, 259, 108857. https://doi.org/10.1016/j.scienta.2019.108857.


Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Bashariah, Amin Mbusango, Ratna Ningsi, Kati Syamsudin Kadang Tola

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Indonesia Berdaya Published By 
Utan Kayu Publishing
 
Lucky Arya Residence 2 No.18.
Jalan HOS. Cokroaminoto Kabupaten Pringsewu
Lampung-Indonesia 35373
 
Email: jiberdaya@gmail.com